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Abstract:Existing research in association mining has focused 
mainly on how to expedite the search for frequently co-
occurring groups of items in “shopping cart” type of 
transactions; less attention has been paid to methods that exploit 
these frequent itemsets for prediction purposes. This paper 
contributes to the latter task by proposing a technique that uses 
partial information about the contents of a shopping cart for the 
prediction of what else the customer is likely to buy. Using the 
recently proposed data structure of itemset trees (IT-trees), we 
obtain, in a computationally efficient manner, all rules whose 
antecedents contain at least one item from the incomplete 
shopping cart. Then, we combine these rules by uncertainty 
processing techniques, including the classical Bayesian decision 
theory and a new algorithm based on the Dempster-Shafer (DS) 
theory of evidence combination. 
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1. INTRODUCTION 
The primary task of association mining is to detect frequently 
co-occurring groups of items in transactional databases. The 
intention is to use this knowledge for prediction purposes: if 
bread, butter, and milk often appear in the same ransactions, 
then the presence of butter and milk in a shopping cart 
suggests that the customer may also buy bread. More 
generally, knowing which items a shopping cart contains, we 
want to predict other items that the customer is likely to add 
before proceeding to the checkout counter. 
  This paradigm can be exploited in diverse applications For 
example, in the domain discussed in [1], each “shopping 
cart” contained a set of hyperlinks pointing to a Web page 
[1]; in medical applications, the shopping cart may contain a 
patient’s symptoms, results of lab tests, and diagnoses; in a 
financial domain, the cart may contain companies held in the 
same portfolio; and Bollmann-Sdorra et al. [2] proposed a 
framework that employs frequent itemsets in the field of 
information retrieval.The prediction task was mentioned as 
early as in the pioneering association mining paper by 
Agrawal et al. [3], but the problem is yet to be investigated in 
the depth it deserves. The literature survey in [4] indicates 
that most authors have focused on methods to expedite the 
search for frequent itemsets, while others have investigated 
such special aspects as the search for time-varying 
associations [5], [6] or the identification of localized patterns 
[7]. Still, some prediction-related work has been done as 
well. 
     In our work, we wanted to make the next logical step by 
allowing any item to be treated as a class label—its value is 
to be predicted based on the presence or absence of other 
items. Put another way, knowing a subset of the shopping 
cart’s contents, we want to “guess” (predict) the rest.It is 

important to understand that allowing any item to be treated 
as a class label presents serious challenges as compared with 
the case of just a single class label. The number of different 
items can be very high, perhaps hundreds, or thousand, or 
even more. To generate association rules for each of  them  
separately would give rise to great many  rules with two 
obvious consequences: first, the memory space occupied  by 
these rules can be many times larger than the original 
database .second, identifying the most relevant rules and 
combining their sometimes conflicting predictions may easily 
incur prohibitive computational costs. In our work, we sought 
to solve both of these problems by developing a technique 
that answers user’s queries (for shopping cart completion) in 
a way that is acceptable not only in terms of accuracy, but 
also in terms of time and space complexity. 
 

2. PROBLEM STATEMENT 
Let I={i1,…….in}be a set of distinct items and let a database 
consist of transactions T1,. . . ,TN such that Ti I; 8i. An 
itemset, X, is a group of items, i.e., X _ I. The support of 
itemset X is the number, or the percentage, of transactions 
that subsume X. An itemset that satisfies a user-specified 
minimum support value is referred to as a frequent itemset or 
a high support itemset. 
     An association rule has the form r(a) →r(c), where r(a)  and  
r(c) are itemsets. The former, r(a), is the rule’s antecedent and 
the latter, r(c), its consequent. The rule reads: if all items from  
r(a) are present in a transaction, then all items from  r(c) are 
also present in the same transaction..The probabilistic 
confidence in the rule r(a) →r(c) can be defined with the help 
of supports (relative frequencies) of the antecedent and 
consequent as the percentage of transactions that contain r(c) 
among those transactions that contain r(a): 
Conf = support(r(a) U r(c) )/support(r(a)).   –(1) 
Let s be a given itemset. An algorithm developed in [4] 
generates, in a computationally feasible manner, all rules s→l 
,that satisfy the user-supplied minimum support and 
confidence values  Өs and Өc, respectively. Of course, if no 
frequent item set subsumes s, no rules are generated. 
However, we are also interested in rules with antecedents that 
are subsumed by s. Furthermore, we need to be aware of the 
circumstance that the presence of an item might suggest the 
absence of other items. With all these issues in mind, we 
narrow down the space of association rules by the following 
guidelines: 
1. For a given itemset s, rule antecedents should be subsumed 
by s. 
2. The rule consequent is limited to any single “unseen” 
item (presence or absence of the unseen item). 
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3.THE PROPOSED APPROACH 
Association rule mining (ARM) in its original form finds all 
the rules that satisfy the minimum support and minimum 
confidence constraints. Many later papers tried to integrate 
classification and ARM. The goal was to build a classifier 
using so-called class association rules. In classification rule 
mining, there is one and only one predetermined target, the 
class label. Most of the time, classification rule mining is 
applied to databases in a “table” format, with a predefined set 
of attributes and a class label. Attributes usually take a value 
out of a finite set of values (although missing values are often 
permitted). 
  Some papers, such as [8] and [9], demonstrated encouraging 
results by incorporating DS theoretic notions with class 
association rules. But most of these methods were designed 
for data sets with limited number of attributes (or data sets 
with small number of distinct items) and one class label. In 
our task, we do not have a predefined class label. In fact, all 
items in the shopping cart become attributes and the 
presence/absence of the other items has to be predicted. What 
is needed is a feasible rule generation algorithm and an 
effective method to use to this end the generated rules. For 
the prediction of all missing items in a shopping cart, our 
algorithm speeds up the computation by the use of the itemset 
trees (IT-trees) and then uses DS theoretic notions to 
combine the generated rules. The flowchart in Fig. 1 shows 
an outline of our proposed system. 

 
Fig. 1. An overview of our proposed system. 
 

3.1 Itemset Tree (IT-Tree) 
Let us briefly summarize the technique of IT-trees as 
developed in [4]. Here, items are identified by an 
uninterrupted sequence of integers. Let D denote a set of 
itemsets and let M be the noumber of distinct items 
encountered in D. Each item is identified with an integer 
from [1,M] so that items in an itemset, s=[a1,a2,….ap], can be 
ordered; ai<aj for i<j,where ai and aj are integers identified ith 
and jth items respectively. 
Definition 1 
(ancestor,largest common ancestor,child): 
Let the symbols s,c,and l denote itemsets. 

1. s is an ancestor of c and write s  c iff s=[a1,a2,….am], c 
s=[a1,a2,….an],, and m≤n. 
2. we say that l is the largest common ancestor of s and c, and 

write l= s  c iff  l s, l c, and there is no l’ such that l’  
s, l’  c, and l ≠ l’. 
3. c is a child of s iff s  c and there is no l, different from s 
and c, such that 
 s  l  c. 
 
Definition 2(Itemset tree): 
An item set tree T,consists of a root and a (possibly empty) 
set,{T1,T2,…..,TK}, each element of which is an itemset 
tree.The root is a pair [s,f(s)] where s is an itemset and f(s) is 
a frequency.If si denotes the itemset associated with the root 
of the i-th subtree, then s  si,s≠ si,must be atisfied for all i. 
      An IT-tree is a partially ordered set of 
pairs,[itemset,f],where the f-value tells us how many 
occurrences of the itemset the node represents. An algorithm 
that builds the IT-tree in a single pass through the database is 
presented in [4] that also proves some of the algorithm’s 
critical properties. For example, the number of nodes in the 
IT-tree is upper-bounded by twice the number of transactions 
in the original database (although experiments indicate that, 
in practical applications, the size of the IT-tree rarely exceeds 
the size of the database). Moreover, each distinct transaction 
database is represented by a unique IT-tree and the original 
transaction can be reproduced from the IT-tree. Note that 
some of the itemsets in IT-tree (e.g.,[1, 2, 4] in Fig. 2) are 
identical to at least one of the transactions contained in the 
original database, whereas others (e.g.,[1;,2]) were created 
during the process of tree building where they came into 
being as common ancestors of transactions from lower levels. 
They modified the original tree building algorithm by 
flagging each node that is identical to at least one transaction. 
In Fig. 2, the flags are indicated by black dots. This flagged 
IT-tree will become the base of our rule generation algorithm. 
 
Example 1: (An IT-Tree). The flagged IT-tree of the 
database 
D ={ [1,4],[2,5],[1,2,3,4,5],[1,2,4],[2,5],[2,4] } is shown in 
Fig. 2 

.  
Fig. 2. The IT-tree constructed from the database D in 
Example 1. 
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3.2 Rule Generation Mechanism 
The proposed rule generation algorithm makes use of the 
flagged IT-tree created from the training data set. The 
algorithm takes an incoming itemset as the input and returns 
a graph that defines the association rules entailed by the 
given incoming itemset. The graph consists of two lists: the 
antecedents list R(a) and the consequents list R(c). Each node, 
ri

(a), in the antecedents list keeps the corresponding frequency 
count f(ri

(a)). 
      As shown in Fig. 3, a line, li;j, between the two lists links 
an antecedent  ri

(a) i with a consequent Ij. The cardinality of 
the link, f(lij), represents the support count of the rule ri

(a) → 
Ij. The frequency counts denoted by fo(·) are used in the 
process of building the graph. If the incoming itemset is s and 
if Ti represents a transaction in the database, then fo (r(a))  
records the number of times s  Ti = r(a). Thus, fo(lij) records 
the number of times where s  Ti = r(a). All the frequency 
counts are initialized to zero at the beginning of the algorithm 
and updated as we traverse the IT-tree. 

 
Fig. 3. The Rule Graph, G. f(ri

(a))= frequency count of 
antecedent, f(lij),=support count of rule  r(a) Ij. 
 
Algorithm 1 conducts a depth-first search in the IT-tree to 
identify the nodes that have nonempty intersections with s. 
Note that the items in s and ci are referred to by their 
corresponding integer representations and sorted in the 
ascending order. 
Algorithm 1: Rule_mining 
The individual steps of the algorithm can be summarized as 
follows: Let R =[sR, f(sR)] denote the root, ci denote the 
children of R, and s denote the incoming itemset. If the first 
item in ci is greater than the last item in s, it is certain that no 
tree node rooted at ci will contain items from itemset s. If s  
ci =  and the last item in ci is greater than the last item in s, 
then, again, it is certain that no nodes in the subsequent trees 
have nonempty intersections with s. But if the first item of ci 
is less than the last item of s, subtree Ti with the root [ci, fci] 
may contain one or more items from s. The algorithm starts 
the search for rules in subtrees rooted at the children of ci. If 
s  ci≠ , the intersection (say, ra) is a candidate for a rule 
antecedent. However, if the node [ci; f(ci)] is not To invoke 
Rule_mining:  

Algorithm that process the itemset tree T and returns the rule 
graph G that predicts unseen items in a user-specified itemset 
s. Let R denote the root of T and let {ci,f(ci)} be Rs 
children.Let Ti denote the subtree whose root is {ci,f(ci)}. 
G = Rule_mining(s,T,{ }). 
1: Rule_mining(s,T,G): 
2: for all ci such that first_item(ci) ≤ last_item(s) do 

3:    if s  ci =  ; and last_item(ci) < last_tem(s) do 
4:       G Rule_mining(s,Ti,G); 

5:    else if r(a) = s  ci≠ ; then 
6:          if ci is not flagged then 
7:             G  Rule mining(s,Ti,G); 
8:         else 
9:             if ci does not have children then fo   f(ci); 
10:          elsefo  f(ci)-∑f(ci’s children);∆f o is 
      the frequency of ci in the database 
11:          end if 
12:         G Update_Graph(G, ra, ci, fo); 
13:         G Rule mining(s,Ti,G); 
14:      end if 
15:    end if 
16: end for 
17: return G; 
 
flagged (i.e., if itemset ci does not exist in the actual data set), 
the candidate antecedent looses the candidacy status. Now, 
the nodes in the subtrees starting from children of ci possess 
intersections with s that are equal to r(a) or larger than r(a) (i.e., 
the intersection is a superset of ra). The algorithm thus 
continues the search for rules in the subtrees rooted at the 
children of ci. If ci is flagged, the number of occurrences of 
ci in the data set is calculated as f(ci)-∑f(c’s children). Then, 
ra becomes a rule antecedent and each item in ci \ra becomes 
aconsequent. The new rules, ra  ij, where ij €(ci\ra),are 
added to the rule graph  Each nonempty intersection of s with 
a flagged node of the tree generates set of association rules of 
the form ra ij, where ra is the intersection of s with the 
node and ij is an item in node such that ij doesnot contain ra. 
Note that aflagged node represents an actual transaction in 
the data set; the number of flagged nodes is upper-bounded 
by N (the number of transactions in the data set). These rules 
are added to the rule graph using Algorithm 2. The idea is to 
update the frequency counts of all rules ri

(a) ij, where ra  
ri

a. If the new rule does not exist in the rule graph, it has to be 
added to the graph and the frequency count has to be updated 
using all the rules of the form ri

(a) ij, where ra  ri
a. 

 
Algorithm 2. Simplified algorithm to update the rule graph. 
Let G denote the current rule graph. 
Let ci denote an itemset from a node and fo denote the 
number of appearances of ci in the database. 

Let ra = ci  s where s is the incoming itemset. 
To invoke Update_Graph use: G = Update_Graph(G, ra, 
Ci, fo). 
1: Update_Graph(G, ra, ci, fo): 
2: for all ra  in R(a) do 
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3: if ri
a  ra  then 

4:  update the frequency count of ri
a,f(ri

a)f(ri
a)+fo; 

5: for all ri
a- ij where ij €(ci\ ra) do 

6: update frequency count of rule ra ij, f(li;j)f(li;j)+ fo; 
7: end for 
8: if ri

a = ra then 
9: update frequency count record, fo (ri

a)fo(ri
a)+f0; 

10: for all ri
a ij where ij €(ci \ ra) do 

11: update frequency count record of rule,f0(lij)fo(li;j)+ fo; 
12: end for 
13: end if 
14: else if  ra   ri

a then 
15: update the frequency count of new rule antecedent 
f(r(a)) f(r(a)) + f0 (ri

(a)); 
16: for all ri

(a)  in G where ij  € (ci\ r(a)) do 
17: update the frequency count of new rule r(a)) ij, 
(add  f0(lij)); 
18: end for 
19: end if 
20: end for 
21: for all ij  € (ci\ r(a)) do 
22: if β(r(a)ij)  € G then 
23: add the rule to the graph with corresponding 
frequency counts; 
24: end if 
25: end for 
26: return G; 
 
The size of the antecedent list Raof the rule graph G is upper-
bounded by min(N,2P),where p is the size of the itemset s. 
The size of Rc is upper-bounded by (n-P), where n is the 
number of distinct items in the data set. At the beginning, 
each list is empty; they grow as we traverse through the 
itemset tree. Algorithm 1 scans the IT-tree and calls 
Algorithm 2 each time it comes across a flagged node. At 
each call, Algorithm 2 carries out one traversal of the ruleset 
(and possibly adds some rules to it). Thus the worst case 
complexity of the rule generation process is O(N2).In reality, 
the computation complexity is much lower because the 
number of nodes that have nonempty intersections with s 
usually constitute only a small fraction of N. In addition, 
when p is small, the size of the rule antecedent list could be 
much smaller than N (i.e., when 2p < N).  
 
Example 2 (A Rule Generation Example). We consider 
the same data set as in the previous example, viz., 
D ={ [1,4],[2,5],[1,2,3,4,5],[1,2,4],[2,5],[2,4] }. Assume 
that the incoming itemset s =[2,3]. Fig. 4 shows the step-by-
step building of the rule graph by Algorithm 1. The itemset s 
has nonempty intersections with four flagged nodes, 
[1,2,3,4,5],[1,2,4],[2,4] and [2,5] .A set of rules is added to 
the rule graph with each nonempty intersection. 
Consider the intersection with the flagged node ci =[1, 2, 3, 
4, 5]. The intersection, r(a)=[2,3], is added to the antecedent 
list of the rule graph and the consequents 1,4,5 are added to 
the consequent list together with links connecting antecedent 
and consequents. Since the frequency count of the node is fo  

= 1all the fo (·)values in the graph assume 1, as shown in Fig. 
4a (lines 21-25 of Algorithm. 2). At the node [1,2,4] the 
intersection, [2], is taken as  r(a). Frequency counts f(r(a) 
,f0(,r

(a)and all frequency counts of both candidate 
([2]1),([2]4) are initialized to frequency count of the 
node [1, 2, 4], fo =1. Since the current rule graph contains [2, 
3] in Ra  and [2] is a subset of [2, 3], update the frequency 
counts according to lines 15-18. Add the new rules to the 
graph (lines 21-25). At the node [2, 4], the intersection is 
again [2]. Since it is already in the graph, update the 
frequency counts of the antecedent and corresponding rule 
(i.e., [2]4) according to lines 4-13. Processing of the node 
[2;,5] is similar to the previous case. However, in this case, a 
new rule [2]5 is added to the graph (line 21-25). 
     The ruleset that resides in G is given in Table 1. The rule 
[2, 3] 1 suggests that, if the itemset [2;,3] is present in a 
shopping cart, item 1 is likely to be added to the cart. Support 
of this rule is 1=6 and the confidence is 1. Note that the 
ruleset in Table 1 consists of only two distinct antecedents: 
[2] and [2, 3]. Since no minimum support or confidence 
threshold is applied yet, one may expect another ruleset with 
the antecedent [3]. However, our algorithm does not generate 
rules having antecedent [3]. Note that no transaction Ti in the 
data set D provides 
an intersection  Ti   s  =  [3], that is, whenever item 3 
appears in a transaction, one or more of other items from s 
happen to appear in Ti, too. So, item 3 alone does not provide 
any additional evidence for the given itemset s. This is why 
our rule-generating algorithm ignores such rules.It is 
important to note here that one might be interested in rules 
that suggest the absence of items.       

 
Fig. 4. Rule graph construction for the testing itemset [2, 3] 
using IT-tree in Fig. 2 (Testing itemset possesses nonempty 
intersections with only four nodes of the tree). (a) After node 
[1,2,3,4,5], (b) after node [1,2,4], (c) after node [2,4], and (d) 
shows the final rule graph, G, after node [2,5]. 
                            TABLE 1 
                      Rule Set That Resides in G 
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     For instance, [2, 3]  (1 = absent), that is, when items 2 
and 3 are already present in the cart, then item 1 is unlikely to 
be added to the cart in the future. In this event, the IT-tree-
building algorithm has to regard the (item; value) pair as an 
item. For instance(1 = present) is one item and  (1 = absent)  
is another. Then, the generated ruleset will eventually consist 
of rules suggesting both the presence and absence of items. 
These rules then have to be combined to yield the final 
decision.Note that we select only rules that exceed the 
minimum support and the minimum confidence in the rule 
combination step. In addition, if two rules with the same 
consequent have overlapping antecedents such that the 
antecedent of one rule is a subset of the antecedent of the 
other rule (e.g., (ac),(a,bc)), we only consider the rule 
with the higher confidence. How the selected rules are used 
for prediction is described in the next section. 
 

4. EMPLOYING DS THEORY 
 
When searching for a way to predict the presence or 
absence of an item ij in a partially observed shopping cart s, 
we wanted to use association rules. However, many rules 
with equal antecedents differ in their consequents—some of 
these consequents contain ij, others do not. The question is 
how to combine (and how to quantify) the potentially 
conflicting evidence. One possibility is to rely on the DS 
theory of evidence combination. Let us now describe our 
technique, which we refer to by the acronym DS-
ARM(Dempster-Shafer-based Association Rule Mining). 
4.1 Preliminaries 
     Let Θ = {θ(1), . . . , θ(n)} be a finite set of mutually 
exclusive and exhaustive propositions signifying the “scope 
of expertise” about some problem domain. It is referred to as 
its frame of discernment (FoD).A proposition θ(i), which is 
referred to as a singleton, represents the lowest level of 
discernible information. The elements in 2Θ, i.e., the power 
set of Θ, form all propositions of interest. A proposition that 
is not a singleton is referred to as a composite, e.g., (θ(1), 
θ(2)). 
 Definition:  
The mapping m : 2Θ → [0, 1] is a basic belief assignment 
(BBA) or mass assignment for the FoD Θ if m(Θ) = 0 and ∑ 
A�Θ m(A) = 1. 
      The BBA of a proposition is free to move into its 
individual singletons. This is how the DS theory models 
ignorance. A proposition that possesses a nonzero BBA is 
referred to as a focal element; and the set of focal elements is 
the core and is denoted by F. The triple {Θ,F,m} is referred 
to as the body of evidence (BoE); and the number of focal 
elements is |F|. 
 
4.2 Concrete Application to Our Task 
4.2.1 Basic Belief Assignment 
In association mining techniques, a user-set minimum 
support decides about which rules have “high support.” Once 
the rules are selected, they are all treated the same, 
irrespective of how high or how low their support. Decisions 

are then made solely based on the confidence value of the 
rule. However, a more intuitive approach would give more 
weight to rules with higher support. Therefore, we propose a 
novel method to assign to the rules masses based on both 
their confidence and support values. However, the support 
value should have a smaller impact on the mass.In many 
applications, the training data set is skewed. To account for 
this data set skewness, we propose to adopt a modified 
support value as follows: 
 
Definition (Partitioned-Support). The partitioned-support 
p_supp of the rule r(a)r(c), is the percentage of transactions 
that contain ra among those transactions that contain r(c) , i.e., 
p_supp = support(r(a)  U r(c) )/support(r(c)).   - (2) 
 
With Definition 2 in place, we take inspiration from the 
traditional Fα-measure [24] and use the weighted harmonic 
mean of support and confidence to assign the following 
BBA to the rule r(a)ij: 
                     
m(ij/r

a) = β,       for ij=present, 
1- β,  for ij= Θ,                            - (3) 
0,       otherwise 

Where  
   β = (1+α2)*conf*p_supp 
           α 2*conf+p_supp                              - (4) 
Where 
    α € [0,1] 
 
Note that, for the task at hand, ij = 1 and hence,  
Θ={(ij =present),(ij=absent). Note that, as α decreases, the 
emphasis placed upon the partitioned-support measure in m(·) 
decreases as well. With this mass allocation, the effectiveness 
of a rule is essentially tied to both its confidence and 
partitioned support. 
 
4.2.2 Discounting Factor 
Following the work in [15], the reliability of the evidence 
provided by each contributing BoE is addressed by 
incorporating the following discounting factor: 
 
d=[1+Ent]-1[1+ln(n=(r(a))]-1,                      - (5) 
 
with  Ent=  -  ∑    m(ij/r

(a))ln[m(ij/r
(a))].                  

                     ij€ Θ     
 
Recall that n denotes the number of items in the database. 
The term  [1+Ent]-1 accounts for the uncertainty of the rule 
about its consequent. The term [1+ln(n=(r(a))]-1  accounts for 
the nonspecificity in the rule antecedent. Note that d 
increases as Ent decreases and length of rule antecedent 
increases. As dictated by 11, the BBA then gets accordingly 
modified. The DRC is then used on the modified BoEs to 
combine the evidence. 
 
Example 3.Table 2 shows a ruleset generated for itemset 
(bread, milk) and a supper market data set that contains five 
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distinct items viz. {egg, bread, butter, milk, wheat bread}. 
Integers from 1 to 5 are used to denote the presence of items 
and 6 to 10 are used to denote the absence of items. For 
instance, (egg = present )=1,(bread = present)=2,(egg = 
absent)=6 etc. Last two columns show the computed BBA 
and d values of the rules. In this example, mass assignment is 
done using three times less weight for the partitioned- 
support compared to the confidence, i.e., α=0:33 and d is 
computed using (5). 
 

TABLE 2 
An Example Ruleset 

 

 
 
To keep the rules as independent as possible, we then 
removed the overlapping rules while keeping the highest 
confidence rule. If two overlapping rules have the same 
confidence, the rule with the lower support is dropped. For 
instance, rules 2 and 3 both suggest “no egg,” and the 
antecedent of the second rule is a subset of the antecedent of 
the first rule. However, rule 2 has lower confidence than  
rule 3.  
 

5. CONCLUSION 
The mechanism reported in this paper focuses on one of the 
oldest tasks in association mining: based on incomplete 
information about the contents of a shopping cart, can we 
predict which other items the shopping cart contains? Our 
literature survey indicates that, while some of the recently 
published systems can be used to this end, their practical 
utility is constrained, for instance, by being limited to 
domains with very few distinct items. Bayesian classifier can 
be used too, but we are not aware of any systematic study of 
how it might operate under the diverse circumstances 

encountered in association mining. We refer to our technique 
by the acronym DS-ARM. The underlying idea is simple: 
when presented with an incomplete list s of items in a 
shopping cart, our program 
first identifies all high-support, high-confidence rules that 
have as antecedent a subset of s. Then, it combines the 
consequents of all these (sometimes conflicting) rules and 
creates a set of items most likely to complete the shopping 
cart. Two major problems complicate the task: first, how to 
identify the relevant rules in a computationally efficient 
manner; second, how to combine (and quantify) the evidence 
of conflicting rules. We addressed the former issue by the 
recently proposed technique of IT-trees and the latter by a 
few simple ideas from the DS theory. 
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